Обзор основных систем спутниковой навигации.

Потенциальные возможности спутниковой навигации появились с момента запуска первого ИСЗ. В настоящее время, спутниковые системы навигации широко используются для обеспечения навигации и позиционирования с высокой точностью для всех потребителей на любом месте и в любое время.Глобальная Система Позиционирования(GPS) разработана и поддерживается на государственном уровне США. Спутниковая Система Глобальной Навигации (GLONASS) разработана в России. Обе эти навигационные системы уже функционируют.Европейский Союз запланировал создать еще одну глобальную навигационную систему (GNSS) Galileo с бюджетом 3.8 миллиарда долларов еще в 1999.Кроме того, другие страны: Китай, Индия и Япония также планируют строить свои собственные спутниковые системы навигации.Основные услуги, которые предоставляют действующие навигационные системы, заключаются в позиционировании, то есть в определении местоположения объекта в системе географических координат, измерение скорости перемещения объекта и передачи сигналов точного времени.

Краткий обзор наиболее развитых и распространенных систем спутниковой навигации

GPS(США)

Рисунок 1. Спутник GPS
GPS (англ. Global Positioning System) — обеспечивающие измерение времени и расстояния навигационные спутники; глобальная система позиционирования) — спутниковая система навигации, часто именуемая GPS (или NAVSTAR). Основной принцип использования системы — определение местоположения путём измерения расстояний до объекта от точек с известными координатами — спутников.
Система GPS является единственной спутниковой системой навигации в настоящее время, которая обеспечивает предоставление услуг в глобальном масштабе. В состав спутниковой системы NAVSTAR входят 24 ИСЗ, находящихся на 6 различных круговых орбитах, которые расположены под углом 60° друг к другу и на высоте примерно 20180км. Период обращения одного спутника - 12 часов. Вес каждого спутника около787 кг, размер более5 м, включая солнечные батареи. Расчетное время существования на орбите 7-8 лет. На борту каждого спутника установлены атомные часы, вычислительно кодирующее устройство и передатчик. Спутники излучают открытые для использования сигналы в диапазонах: L1=1227,60МГц и L2=1575,42  МГц. Типичная точность современных GPS-приёмников в горизонтальной плоскости составляет примерно 6-8 метровпри хорошей видимости спутников и использовании алгоритмов коррекции. На территории США и Канады имеются станции WAAS, передающие поправки для дифференциального режима, что позволяет снизить погрешность до 1-2 метровна территории этих стран. При использовании более сложных дифференциальных режимов, точность определения координат можно довести до10 см. К сожалению, точность любой СНС сильно зависит от открытости пространства, от высоты используемых спутников над горизонтом.

Российская ГЛОНАСС

Рисунок 2. Спутник ГЛОНАСС.
ГЛОНАСС – Глобальная Навигационная Спутниковая Система была разработана в 1978 г. Основой системы должны являться 24 спутника, движущихся над поверхностью Земли в трёх орбитальных плоскостях с наклоном орбитальных плоскостей 64,8° и высотой 19 100 км.  Каждый спутник совершает круг вокруг Земли за 11часов 15минут. Масса аппарата — 1,5 т, его длина около 8 м, срок активного существования КА 3-5 лет. Для системы ГЛОНАСС характерен повтор орбит спутниками каждые 8дней. Каждый из них занимает место предыдущего через несколько дней. Спутники излучают сигналы в диапазонах: L1=1200МГц и L2=1600  МГц. Согласно данным СДКМ на 29 марта 2010 года ошибки навигационных определений ГЛОНАСС по долготе и широте составляли 4,46—8,38 м при использовании в среднем 7—8 КА (в зависимости от точки приёма).

Европейская Система Galileo

Рисунок 3. Спутник Galileo
Галилео (Galileo) — совместный проект спутниковой системы навигации Европейского союза и Европейского космического агентства, является частью транспортного проекта Трансъевропейские сети. Система предназначена для решения навигационных задач для любых подвижных объектов с точностью менее одного метра. В отличие от американской GPS и российской ГЛОНАСС, система Галилео не контролируется национальными военными ведомствами. Полная орбитальная группировка будет насчитывать 30 спутников в трех орбитальных плоскостях и круговых орбитах высотой 23616 км от Земли и наклонением орбиты 56о. В каждой из плоскостей будут находиться 9 рабочих и 1 резервный спутник. Каждый спутник будет иметь вес 700 кг, мощность 1600 Вт, размеры 2.7х1.1х1.2 м и ширину при развернутых солнечных батареях 13 м.
GALILEO будет передавать 10 сигналов различного назначения, что позволит обеспечить следующие виды услуг:
- доступные всем услуги по определению местоположения с точностью лучше, чем9 мдля массового потребителя;
- коммерческие услуги по определению местоположения с точностью выше, чем1 м;
- услуги для служб спасения для всех видов транспорта;
- услуги для государственных служб, таких как полиция, пожарные, скорая помощь, для военных целей и для других служб жизнеобеспечения;
- услуги по поиску и спасению в дополнении к спутниковой системе COSPAS-SARSAT.

Индийская Спутниковая Региональная Система Навигации IRNSS

Правительство Индии одобрило 9 Мая 2006, проект развертывания Индийской  Спутниковая Региональная Система Навигации (IRNSS) с бюджетом 14.2 миллиарда Рупий в течение следующих 6-7 лет.  Спутниковая группировка IRNSS будет состоять из семи спутников на геосинхронных орбитах. Причем четыре спутника из семи в IRNSS будут размещены на орбите с наклонением в 29о по отношению к экваториальной плоскости. Все семь спутников будет иметь непрерывную радио видимость с Индийскими управляющими станциями.
Спутники IRNSS будут использовать платформу, подобную той, которая используется на русском метеорологическом спутнике Kalpana-1 с массой 1330 кг и мощностью солнечных батарей 1400 Вт. Полезная нагрузка будет включать два 40 Вт твердотельных усилителя.
Земной сегмент IRNSS будет иметь станцию мониторинга, станцию, резервирования, станцию контроля и управления бортовыми системами. Государственная компания ISRO является ответственной за развертывание IRNSS, которая будет находиться целиком под контролем Индийского правительства. Навигационные приемники, которые будут принимать сигналы  IRNSS, так же будут разрабатываться и выпускаться индийскими компаниями.

Китайская Навигационная Спутниковая Система Compass

Китай, являющийся наиболее быстро развивающейся страной в мире, также начал строительство своей собственной спутниковой системы навигации Compass.
Космический сегмент спутниковой системы навигации Compass будет сформирован из 5 спутников на Геостационарной орбите (ГСО) и 30 спутников на средней земной орбите.
Два типа услуг будут предусмотрены.  Для общего пользования будет передаваться сигнал, обработка которого позволит добиться точности местоопределения в 10 м, скорости в 0.2 м/с  и определения текущего времени с точностью 50 нс.
Ограниченный круг пользователей получит возможность измерений с большей точностью.
Три спутника на ГСО были выведены в 2000 г. Такая система их трех спутников в настоящее время предоставляет услуги местоопределения, точного времени и связи и успешно дополняет GPS.
Китай желает сотрудничать с другими странами в разработке спутниковой навигации, чтобы обеспечить взаимодействие Compass с другими глобальными навигационными системами.

Японская Quasi-Zenith навигационная система QZSS

Первоначально Японская QZSS была задумана в 2002 г. как коммерческая система с набором услуг для подвижной связи, вещания и широкого использования для навигации в Японии и соседних районах Юго-Восточной Азии. В марте 2006 Японское правительство объявило, что первый спутник не будет предназначен для коммерческого использования и будет запущен целиком на бюджетные средства для отработки принятых решений в интересах обеспечения решения навигационных задач. Только после удачного завершения испытаний первого спутника начнется второй этап и следующие спутники будут в полной мере обеспечивать запланированный ранее объем услуг. Новая дата для запуска первого спутника была перенесена на 2010 г.
Всего в спутниковый сегмент войдут 3 спутника, орбиты которых будут выбраны таким образом, чтобы их подспутниковые точки описывали на земной поверхности одну и ту же траекторию с одинаковыми временными интервалами. При этом, по крайней мере один спутник будет виден под углом места более 70 градусов в любое время на территории Японии и Кореи. Эта особенность и определила название навигационной системы Quasi-Zenith. Антенны спутников будут передавать сигналы практически во всей зоне видимости спутников, обеспечивая навигацию и передачу сигналов точного времени. Однако сигналы L1-SAIF, которые включают в себя различные поправки, позволяющие повысить точность измерений с помощью сигналов GPS и, возможно, GALILEO, будут передаваться с помощью параболической антенны только на Японию.
Сигналы,  которые будут излучать спутники QZSS, полностью совместимы с сигналами будущей GPS. Японская QZSS в основном предназначена для улучшения характеристик GPS на национальной и некоторых соседних территориях. Ожидается, что внедрение QZSS позволит существенно повысить эффективность решения навигационных и других задач и придаст ускорение внедрению новых применений для навигации, которые требуют большей точности и надежности.

Основные принципы измерения координат в СНС

Навигационной задачей в СНС принято называть нахождение пространственно-временных координат потребителя и составляющих вектора его скорости, в совокупности называемых вектором потребителя. В результате решения навигационной задачи в общем случае должны быть найдены пространственные координаты потребителя (x,y,z), поправка t к шкале времени потребителя относительно шкалы времени СНС и составляющие вектора скорости как производные от координат потребителя во времени. Потребитель имеет возможность измерять задержку сигнала и доплеровский сдвиг частоты (радионавигационные параметры), а также выделять из сигнала данные альманаха и эфемерид ( навигационное сообщение). Геометрические параметры, которые соответствуют радионавигационным, принято называть навигационными параметрами. Так, задержке сигнала τ соответствует дальность R=c* τ, где с –скорость света; доплеровскому смещению частоты fd соответствует радиальная скорость сближения Vr= fd*λ, где λ-длинна волны излучаемого сигнала. В открытом пространстве геометрическое место точек с одинаковыми значениями R образует поверхность положения в виде сферы радиусом R и центром, совпадающим с фазовым центром передающей антенны. При пересечении двух поверхностей положения образуется линия положения - совокупность точек, имеющих два заданных значения навигационного параметра R. Пересечение двух сфер дает линию положения в виде окружности. Местоположение конкретной точки определяется по пересечению двух линий положения или, соответственно, трех поверхностей положения.

Дальномерный метод

Рисунок 4. Поверхности и линии положения
В большинстве применений СНС можно считать, что потребитель находится на поверхности Земли. Условно примем форму Земли за идеальную сферическую. Тогда на рис сферу с радиусом R можно считать земной поверхностью с центром масс в точке О, а сферу с радиусом Ri поверхностью положения, образованной вокруг НКА с центром масс в точке Оi.Уравнение сферы имеет вид:
где Ri-дальность между i-м НКА и потребителем; xi, yi, zi- известные координаты на момент измерения координаты НКА; x,y,z – координаты потребителя.
Пространственные координаты потребителя находят в точке пересечения трех поверхностей положения, описываемых уравнением сферы. Для наземного потребителя линия положения в случае с одним НКА представляет собой окружность на поверхности Земли. В случае с двумя НКА наземный потребитель может находиться в одной из  двух точек образованных при пересечении двух окружностей. Возникает неоднозначность, которая может быть устранена знанием ориентировочных координат потребителя. Если ориентировочные координаты неизвестны, неоднозначность устраняется измерением дальности до третьего НКА. Таким образом, для определения координат потребителя на поверхности Земли, при условии абсолютной неизвестности предварительных координат, необходимо измерение как минимум трех дальностей до НКА. В общем случае, когда высота потребителя над поверхностью Земли неизвестна, земная поверхность не может быть принята за одну из поверхностей положения. Тогда в случае со знанием предварительных координат требуется измерение дальностей минимум до трех спутников; в случае с абсолютной неизвестностью предварительных координат необходимо измерение дальностей до четырех спутников.
Если учесть, что некоторые спутники в разные моменты времени могут находиться близко к линии радиогоризонта, то чрезвычайно невыгодно с точки зрения приема радиосигнала и точности измерений, либо быть неисправны, то становится очевидной необходимость нахождения в зоне видимости потребителя как минимум 5-6 НКА, что и обуславливает существующую орбитальную структуру СНС. Меньшее количество видимых НКА снижает доступность, целостность и непрерывность навигационного поля СНС.
В дальномерном методе навигационная задача представляет собой систему  уравнений сферы, где количество уравнений определяется приведенными выше условиями. В этих уравнениях неявно подразумевается, что все величины взяты в один момент времени, но координаты спутника определены в системной шкале времени, а задержки сигнала и координаты потребителя вычисляются в шкале времени потребителя. При расхождении шкал времени на величину Δt возникает погрешность измерения дальности ΔR=с* Δt,  приводящая к возрастанию погрешности местоопределения. Приблизить синхронизацию шкал к идеальной можно при помощи использования потребителем эталона времени и частоты, периодически сверяемого с системной шкалой. На практике этот метод нереализуем для большей части потребителей из-за сложности и дороговизны оборудования и применяется лишь на некоторых контрольных и дифференциальных наземных станциях.

Псевдодальномерный метод

Расхождение шкал Δt на время проведения измерений можно считать постоянной величиной. Поэтому при измерении дальности до i-того НКА получают псевдодальность RI, отличающуюся от истинной дальности Ri на постоянную величину ΔR. Уравнение сферы для псевдодальности приобретает вид:
Как и в дальномерном методе, поверхностью положения является сфера с центром в центре масс НКА, но радиус этой сферы изменен на неизвестную величину ΔR. Для определения координат потребителя необходимо решить задачу с четырьмя неизвестными (x,y,z, ΔR). Следовательно, для решения системы уравнений в псевдодальномерном методе необходимо измерить псевдодальности минимум до четырех спутников. При этом по-прежнему возникает пространственная неоднозначность, которую стараются исключать при помощи априорного знания или предвычисления координат, в противном случае потребовалось бы измерение псевдодальностей до пяти НКА, что не всегда осуществимо на практике. Жесткие требования, предъявляемые псевдодальномерным методом к количеству наблюдаемых спутников реализуются только в среднеорбитальных СНС. Низкоорбитальные СНС обеспечивают периодическую видимость 1..2 НКА, поэтому определение координат потребителя в этих системах происходит не в реальном времени, а после проведения последовательных измерений нескольких линий положения по сигналам одного НКА,
Очевидно, что при нахождении постоянной погрешности ΔR= с* Δt потребитель одновременно находит и величину расхождения Δt, что позволяет ему синхронизировать свою шкалу времени с системой. Благодаря этой возможности значительно упрощается аппаратура потребителя, что обусловило преимущественное применение псевдодального метода.

Формирование кодовых последовательностей

В данном пункте будем рассматривать формирование кодовых последовательностей на примере системы GPS.
Сигналы системы GPS включают в себя сигналы, необходимые для определения расстояния до спутника, и навигационные сообщения. Навигационные сообщения содержат информацию об эфемериде, которая необходима, чтобы вычислить положение спутника на орбите,  и данные о времени и текущем состоянии спутниковой группировки.
С момента создания системы GPS были разработаны два кода. Грубый код, имеющий обозначение C/A (варианты расшифровки: «clear/access» – свободный доступ или «coarse/acquisition» - грубое получение), и точный Р-код («private» – частный или «precise» – точный). Грубый код общедоступен, а точный зашифрован и используется в военных целях. Оба эти кода являются псевдослучайными (PRN или PseudoRandom Number code) и служат для идентификации каждого спутника.
Код C/A представляет собой псевдослучайное число длиной 1 023 бит, которое повторяется каждую миллисекунду, т.е. со скорость 1.023 Мб/с. Псевдослучайные коды совпадают только в том случае, если генерируются одинаковым образом. Каждый спутник передает свой PRN-код, который нельзя спутать с сигналами другого спутника. В данном случае используется принцип CDMA (Множественный доступ с кодовым разделением каналов). Все спутники вещают на одной частоте, но GPS-приемник определяет благодаря коду спутник-источник сигнала.
Р-код также является кодом PRN, но имеет существенные отличия. Во-первых, его длина составляет 6 187 100 000 000 бит, что увеличивает его уникальность и исключает любую неопределенность в пределах Солнечной системы. Последовательность P-кода повторяется только каждую неделю. Однако для того чтобы использовать точный код вначале необходимо получить код С/А, только после этого возможна синхронизация с военным кодом. Во-вторых, для того чтобы исключить неправомочное использование P-кода, он модулируется W-кодом, в результате чего появляется код Y, который и передается спутниками. Именно поэтому точный код называют P(Y).

Структура кодовых последовательностей. 

Двоичная кодовая последовательность Pi(t) формируется суммированием по модулю 2 двух псевдослучайных последовательностей X1(t) и X2(t-iT), где T = 1/(1,023*107)с - период следования разрядов P-кода, i - целое число в интервале от 1 до 37, соответствующее номеру НКА. Таким образом, генерируется 37 уникальных последовательностей P(t) с использованием одинаковых генераторов кода.Линейная последовательность Gi(t) является результатом сложения по модулю 2 двух 1023-битовых линейных последовательностей G1 и G2. Вторая последовательность избирательно задерживается на целое число разрядов,  для формирования 36 уникальных последовательностей G(t).
Формирование Р-кода. Как было сказано выше, псевдослучайная последовательность Рi является суммой по модулю 2 двух последовательностей Х1и X2i тактируемых с частотой 10,23 МГц. В свою очередь, Х1 формируется сложением по модулю 2 выходных сигналов двух 12-разрядных регистров сдвига(Х1А и Х1В) генерирующих сокращенные кадры длиной 4092 и 4093 бит соответственно. Когда число кадров Х1 достигает 3750, генерируется признак конца эпохи Х1. Эпоха Х1 генерируется каждые 1,5 с, когда сформирована последовательность Х1 из 15,345,000 разрядов. Образующие полиномы для последовательностей Х1А и Х1В, относящиеся к соответствующим регистрам сдвига, имеют следующий вид:
(Х1А)   1 +Х6 + Х8 + Х1112;
(Х1В  1+Х12 + Х5 + Х8 + Х9 + Х10 + Х1112.
Упрощенные схемы формирования кодовых последовательностей при помощи регистров сдвига показаны на рис. 5, рис. 6, рис. 7 и рис. 8.
Рисунок 5.Формирование последовательности Х1А
Состояние каждого генератора может быть выражено как слово кодового вектора, следующим образом описывающего двоичное состояние каждого регистра:
-         вектор складывается из двоичных состояний каждого разряда регистра;
-         значение 12-го разряда последовательно принимает значения всех предыдущих, младших разрядов строго по порядку следования номеров;
-         сдвиг производится от младших разрядов к старшим и разряд 12 является выходом генератора кода.
Рисунок 6. Формирование последовательности Х1В
Рисунок 7.Формирование последовательности Х2А
Такой кодовый вектор описывает текущий двоичный уровень на выходе и 11 последующих уровней. В соответствии с этим определением, в начале каждой эпохи Х1, сдвиговый регистр XIА инициализируется кодовым вектором 001001001000 и сдвиговый регистр Х1В инициализируется кодовым вектором 010101010100. Первый разряд последовательности Х1А и первый разряд последовательности Х1В формируются одновременно, во время первого такта каждого периода Х1.
Рисунок 8. Формирование последовательности Х2В.
Исходный 4095-битовый кадр генерируемых последовательностей укорочен для предотвращения прецессии (несинхронизма) последовательности Х1В с последовательностью Х1А в течение периода Х1. Реинициализация сдвигового регистра Х1А производится после выдачи 4092 бит последовательности, с отбрасыванием последних трех бит (001) действительной 4095-битовой последовательности Х1А. Реинициализация сдвигового регистра Х1В происходит после выдачи 4093 бит последовательности, с отбрасыванием двух последних бит (01) действительной последовательности Х1В. В результате фаза последовательности Х1В сдвигается на один бит для каждого кадра Х1А в составе эпохи Х1.
Как было сказано выше, эпоха Х1 состоит из 3750 кадров Х1А (15,345,000 бит), что не соответствует целому числу кадров Х1В. Для устранения данного несоответствия сдвиговый регистр Х1В фиксирует финальное состояние (бит 4093) своего 3749-го кадра, и удерживает его, пока регистр Х1А отрабатывает свой 3750-й кадр (343 дополнительных бита). По окончании 3750-го кадра устанавливается признак начала новой эпохи Х1, который инициализирует регистры Х1А и Х1В.
Для формирования последовательности Х2i сначала формируется последовательность Х2, которая затем задерживается на целое число тактов i = 1...37. Каждая последовательность Х2i суммируется по модулю 2 с последовательностью Х1, в результате формируется 37 уникальных последовательностей P(t)из которых первые 32 предназначены для использования навигационными НКА, остальные пять используются альтернативными передатчиками, например наземными псевдолитами локального действия.
Сдвиговые регистры Х2А и Х2В, используемые для формирования последовательности Х2, функционируют аналогично упомянутым выше Х1А иХ1В. Это также укороченные последовательности, Х2А длиной 4092 бит и Х2Вдлиной 4093 бит, следовательно, они имеют такое же соотношение длин, как сдвиговые регистры Х1. Полный цикл Х2А включает в себя 3750 кадров; регистрХ2В защелкивает выходное состояние 3749-го кадра и удерживает его, пока регистр Х2А отрабатывает свой 3750-й кадр. Образующие полиномы для регистровХ2А и Х2В, относящиеся к соответствующим регистрам сдвига, имеют вид:
(Х2А)  1+Х13 + Х4 + Х6 + Х7 + X8+X9 + Х10 + Х1112;
(Х2В)  1 +Х2 + Х3 + Х4 + Х8 + Х9 + Х12.
Регистр Х2А инициализируется вектором 100100100101, регистр Х2В вектором 010101010100.
Когда начинается новая неделя GPS, сдвиговые регистры Х1А, Х1В, Х2А и Х2Винициализируются для выработки первого разряда недели. Прецессии (дискретные биения) регистров сдвига по отношению к Х1A циклически продолжаются, пока не закончится последний кадр Х1А на интервале текущей недели GPS. В интервале времени последнего кадра Х1А регистры Х1В, Х2А и Х2В отработав свои кадры, удерживают последнее выходное состояние, пока не закончится кадр регистраХ1А. В этот момент времени все четыре регистра инициализируются и вырабатывается первый разряд новой недели.
Формирование C/A-кода. Каждая последовательность Gi(t) представляет собой 1023-битовый код Голда, в свою очередь являющийся суммой по модулю 2 двух 1023-битовых линейных последовательностей G1 и G2i.
Последовательность G2, формируется путем задержки G2 на целое число тактов в диапазоне от 5 до 950. Образующие полиномы для G1 и G2 описываются следующими выражениями:
 G1 = X10 + X3+1
G2 X10 + X6 + X8 + X6 + X3 + X2 + 1.
На рис. 9 и 10 показано формирование последовательностей G1 и G2.
Рисунок 9. Формирование последовательности G1
Рисунок 10. Формирование последовательности G2
Начальный вектор обеих последовательностей имеет вид 1111111111. Сдвиговые регистры G1 и G2 инициализируются по началу эпохи Х1. Для тактирования регистров G1 и G2 используется частота 1,023 МГц, образующаяся делением частоты 10,23 МГц, поступающей из кодера P-последовательности. Инициализация регистров в фазе с эпохами Х1 гарантирует, что первый бит C/A-кода начнется синхронно с первым битом P-кода.
Рисунок 11. Формирование C/Aкода
Действующая задержка последовательности G2, благодаря которой формируется индивидуальная последовательность G2i, достигается коммутацией двух выводов сдвигового регистра G2 с последующим суммированием по модулю 2, как показано на рис. 11. Выбирается одна из 36 возможных комбинаций подключения выходов регистра, соответствующая одному варианту P-кода.
Список используемой литературы:
1)http://ru.wikipedia.org/wiki/GPS
2)http://ru.wikipedia.org/wiki/%D0%93%D0%9B%D0%9E%D0%9D%D0%90%D0%A1%D0%A1
3)http://ru.wikipedia.org/wiki/%D0%93%D0%B0%D0%BB%D0%B8%D0%BB%D0%B5%D0%BE_(%D1%81%D0%BF%D1%83%D1%82%D0%BD%D0%B8%D0%BA%D0%BE%D0%B2%D0%B0%D1%8F_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0_%D0%BD%D0%B0%D0%B2%D0%B8%D0%B3%D0%B0%D1%86%D0%B8%D0%B8)
4)http://kaf401test.rloc.ru/articles/9/32/
5)http://www.navi-trans.ru/info/othersystems
6)Соловьев Ю.А_Системы спутниковой навигации_М_Эко-Трэндз_2000
7)Яценков В.С_Основы спутниковой навигации_Системы GPS NAVSTAR и ГЛОНАСС_М_Горячая линия-Телеком_2005